
How to ingress in a next layer Kubernetes Cluster

For publishing web services in the current version (v1) of our next layer Kubernetes Cluster
it is necessary to setup an ingress controller inside of the cluster. It is up to the customer
which software he uses for this purpose. If you need further support from our engineers
we recommend using Traefik.

Concept

The concept of using an ingress controller in a next layer managed Kubernetes Cluster is
pretty simple. Just deploy the software by using your preferred way (yaml deployment
files / helm / etc) and create it’s services as type NodePort . As soon as the service is
deployed inside of the cluster, you will get random generated or manually defined ports
which we can use to route your traffic from our load balancer into your cluster.

These ports will be used by us to balance the traffic to your Kubernetes nodes and further
on into your cluster. The installed CNI will ensure that the traffic is routed to the node
where it belongs to.

Step by step (example)

1. Install helm on your local machine or bastion host.
Helm | Installing Helm

2. Download and extract our provided traefik installation example, change into that directory
and run the helm command to deploy traefik. You can modify the file called values.yml
to customize the deployment so it fit’s your needs.

helm install traefik traefik/traefik --namespace=traefik --values=values.yml

3. After running this command, you should be able to see a running pod and some services
in the traefik namespace. If you take a closer look on the output of kubectl get
services -n traefik you will see at least one service of type NodePort and it’s ports.

These ports are the information we need to balance traffic into your cluster. Please just

https://doc.traefik.io/traefik/
https://doc.traefik.io/traefik/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

provide us this output and add the information which public port should route to which
nodeport.

PORT(S)

80:32123TCP,443:32763/TCP

The description which will be provided to us could look like this:

PORT(S)

1.2.3.4:80 -> 32123

1.2.3.4:443 -> 32763

4. Now you can add Traefik IngressRoutes and define, which domain should be proxied to
which kubernetes service.

As an example:

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

 name: mywebservice-web

 namespace: mywebservice

spec:

 entryPoints:

 - web

 routes:

 - match: Host(`mywebservice.nextlayer.at`)

 kind: Rule

 services:

 - name: mywebservice-web

 kind: Service

 namespace: mywebservice

 port: 80

https://doc.traefik.io/traefik/routing/providers/kubernetes-crd/
https://doc.traefik.io/traefik/routing/providers/kubernetes-crd/

And for tls connections:

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

 name: mywebservice-web-tls

 namespace: mywebservice

spec:

 entryPoints:

 - websecure

 routes:

 - match: Host(`mywebservice.nextlayer.at`)

 kind: Rule

 services:

 - name: mywebservice-web

 kind: Service

 namespace: mywebservice

 port: 80

 tls:

 certResolver: leresolver

 domains:

 - main: mywebservice.nextlayer.at

In this example we are using the leresolver which is a preconfigured certificate resolver
you can find in our config example. It will try to create let’s encrypt ssl certificates by using
http acme verification.

